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Summarv
Earlier work [2] reported a single-exponential distribution: When the same configuration is relaxed to zero stress, all slip systems revert to a single  We extend the 1D Poisson link-splitting model [2] by allowing link growth:
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® The long-tail component originates from stress-induced bowing of long y E . A3 A6 - BS ~ If G is constant (linear growth), = single exponential. If G becomes super-linear
links in the dislocation network. We extend this to a double exponential form for active systems: < (I oc1? beyond threshold), = double exponential.
. . . . o o § 1019
e A generalized Poisson process with link splitting and growth reproduces N NZ,(U e Nz'(Z) i) ,
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— 10 Figure 5: After stress removal, long tails vanish, confirming stress-induced bowing. (a) (b) (c)
We performed 3D DDD simulations using the ParaDiS code for Cu single crystals % 1019
under uniaxial loading across the stereographic triangle (as performed in Ref. [1]). After stress relaxation, the double-exponential behavior disappears, leaving a single exponential Figure 7: Extended Poisson process: random splitting & link growth.
Each configuration contains ~ 2 x 10* dislocation links, averaged over strain ~ § 107 distribution across all systems. o _ _ _ o _
windows (74 €[0.9, 1.05]%) for statistical robustness. & m This verifies that the long tails originate from stress-induced dislocation bowing during The schematic |I|u.strat_es a.generahzed point P0|_sson process, connecting dislocation
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X 1o the strain hardening process.
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For [001] loading, inactive slip systems can be well described by a single exponential dis- 0.00 a0 30
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Figure 1: Loading and DDD setup for link statistics extraction. This secondary exponential tail corresponds to a minority of longer dislocation links that ) 20 2
experience bowing-out under applied stress. e 010 k' )
The schematic illustrates the uniaxial loading geometry applied to the Cu single This distinction highlights slip-system-level differences in strain hardening. %
crystal and the extraction region used for measuring dislocation link statistics. 0.05 3};
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Figure 6: Correlation between long-link length and population fractions. 20 25
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— 10% Figure 6 shows the correlation between the long-link fraction and its normalized length. Slip Figure 8: Numerical Poisson model reproducing single and double exponentials.
T 10V systems with longer normalized mean length AZ(-Q) (second exponential population) exhibit _
smaller populations £ indicating that long links are rare but influential. The numerical simulation confirms that linear growth yields a single-exponential link
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Fi 4: For [111] loadineg. doubl | ta . ‘ segments dominate the distribution tail and reflect stress-induced bowing. Introducing super-linear growth reproduces the observed double-exponential form,
igure 4: For [111] loading, double-exponential tails appear on active systems. with a sharp crossover at the critical length scale. This model links the emergence of
References long tails to stress-induced link bowing out.
Figure 2: 118 loading orientations distributed over the stereographic triangle. Under [111] loading, the distribution also exhibits long-tail behavior on active slip systems,
consistent across most loading orientations in the stereographic triangle. | | o | | N Contact
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collected based on the strain window shown in the schematic. This clear contrast implies the stress-activated nature of the long-link population. of strain hardening. Physical review letters, 121(8):085501, 2018.
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